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PREFACE

Members of the nuclear data community are generally in agreement that
uncertainty information should ultimately be provided for most evaluated
nuclear data files. The methods by which this goal might be achieved are
still subject to debate and are likely to require attention for some time
to come.

Acceptable procedures for the evaluation of experimental data are now
becoming more widely understood and implemented. Two key pragmatic con-
siderations are: 1) much of the available data from earlier work were
acquired and/or documented in ways not very compatible with rigorous
evaluation procedure; 1ii) experimenters need to be educated regarding
uncertainty matters so that they will be more likely to address this aspect
of their work in acceptable fashion. There remains, of course, the
nagging problem of the documentation and manipulation of large quantities of
uncertainty information. This is essentially a data-base—management problem
rather than a physical-sciences concern.

Contemporary nuclear data evaluations rely extensively on model calcu-
lation results as well as on experimental data. Inevitably, the question of
uncertainty estimation for model-calculated results must be dealt with rou-
tinely along with the, corresponding issue for experimentally-derived infor-
mation. The nuclear data community is aware of this matter and some atten-
tion has already been devoted to it. The present work addresses this partic-
ular problem in a modest way. The approach described here is intended to be
applicable under certain circumstances, as discussed in the following text.

Uncertainty analysis is founded upon the laws of statistics and con-
ceptually reflects our inability to acquire exact quantitative knowledge
from physical observations. Observation is equivalent to experimentation,
s0 1t is not clear how one should handle the matter of uncertainty when
dealing with nuclear model calculations. Uncertainty for nuclear model
calculations cannot be readily compared with what we are used to considering
as uncertainty for observational science. In fact, the terms "mistake"” or
"blunder” more readily describe the calculational experience. Couputer
calculational procedures are subject to limitations in precision as are
experimental ones. Also, it is often necessary to explicitly introduce
numerical approximation methods. These considerations can noticeably
affect the outcome of nuclear cross section calculations and lead to error.
However, the major source of uncertainty usually stems from the failure of
models to represent physical reality, or from uncertain knowledge of the
parameters for models which otherwise might be capable of doing a good job.
These shortcomings and the awesome complexity typical of most nuclear model
codes are serious difficulties which must be considered in developing
methods for estimating uncertainties of model-calculated results.

The acquisition of a deeper understanding of physical processes and
the development of correspondingly-more-sophisticated models for calcu—
lational purposes are tasks for basic research. Progress in this area will
surely benefit the nuclear data field. In the meantime, the nuclear data
community must work to achieve an acceptably-reliable evaluated data base
for technological applications, regardless of limitations in contemporary
theoretical understanding of nuclear processes.

vi
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ABSTRACT

We suggest a procedure for estimating uncertainties in neutron cross
sections calculated with a nuclear model descriptive of a specific mass
region. It applies standard error propagation techniques, using a model-
parameter covariance matrix. Generally, available codes do not generate
covariance information in conjunction with their fitting algorithms. There-
fore, we resort to estimating a relative covariance matrix a posteriori
from a statistical examination of the scatter of elemental parameter values
about the regional representation. We numerically demonstrate our method by
considering an optical-statistical model analysis of a body of total and
elastic scattering data for the light fission-fragment mass region. In
this example, strong uncertainty correlations emerge and they conspire to
reduce estimated errors to some 50% of those obtained from a naive un-
correlated summation in quadrature,

*This work supported by the U,S. Department of Energy.



I. INTRODUCTION

Models are employed extensively in nuclear science. In basic studies
they provide the means for interpreting experimental results in terms of more
fundamental knowledge or assumptions, and they also provide the means for
predicting certain features of the outcome of experiments which have not yet
been performed, In nuclear technology models are useful in representing
large bodies of experimental results, and they serve to provide estimates of
physical quantities which for one reason or another are impractical to measure.

The word "model"” is used somewhat loosely in the literature. It there-
fore seems Prudent to straight away make clear some nuances of its usage and
substitute alternative terms to minimize possible misunderstanding of what we
wish to say in thig report. Perhaps in the most fundamental sense “model"
implies a set of assumptions (often expressed in terms of phenomenological
formulas or algorithms) which will summarize the systematics of our con-
temporary knowlege of certain aspects of nuclear behavior. Specific examples
are the optical model] (OM), the statistical model, and so forth. One might
include in thig category more limited schemes such as assumed nuclear level
density formulas, we only rarely need to use the word in this sense and
shall substityte the term “concept" in its stead.

Another use of the word "model” is in the context of model calculations.
Here it implies a collection of what we have defined above as concepts, For
example, the mode] structure (or model for short) underlying the nuclear
model code ABAREX (Sections I and III) involves not only the OM concept, but
also the statigtical-model formulas (including level-width fluctuations),
level density formulasg and more. The unqualified use of "model” in the
Present paper alludes to this meaning. Finally one occasionally finds the
term "model” used to mean the specific parameters which, when introduced
into a model calculation, €.g., effectively summarize a given data base.
Here we prefer the term "parameterization". It is identified as "local” if
it describes ap individual nucleus or element, or “"regional” if is describes
a number of nucleg covering a substantial mass range. An obvious difference
between a local ang a regional parameter is that the former has been ad justed
to quantitatively describe the behavior of a specific nucleus, while the
latter might be 3 compromise to accommodate a number of nuclei. As it turns
out, a fixed constant will seldom be adequate and a parameter must be
assigned a simple empirical functional form dependent upon one or more
variables characteristic of the mass region investigated. A well-known
example of such a "parametric enhancement” is the isospin dependence of the
OM real potential. ope of the key issues of this work is the relationship

between local ang reglonal parameter sets. A great deal more will be said
about this later on,

Interest in the role of models in predicting quantities which are very
difficult to measure is keen in the field of nuclear data because of the
applied need to geénerate extensive evaluated results for fission and fusion
reactor development purposes (e.g., Ref, 1). The role of uncertainties in
experimental Measurements, and in the evaluation of experimental data for
applications, has been recognized and investigated extensively (e.g., Ref,
2). It is alge recognized that there is a need to quantify the uncertainties
assoclated with mode] calculations which are used to interpolate and/or



extrapolate the nuclear data base into regions either devoid of or sparsely
represented by experimental results. The topic of model-calculation uncer-
tainties was discussed at a 1982 workshop on covariance methods (Ref. 3).
There, M. Bhat provided a useful bibliography of relevant papers; that list is
reproduced in the present reference list (Refs. 4-15).

Models used in practical applications involve adjustable parameters.
Physical considerations are used to limit the number and range of these
parameters, and to define model structures in such a way that they represent
a reasonable facsimile of what is understood about the nuclear problem at
hand. In the absence of a precise understanding of nuclear dynamics, many
of the models incorporate phenomenological features which have been found to
be useful. From a model viewpoint, there are two distinct origins of
uncertainty. One involves the uncertainty in establishing the parameteri-
zation. The other stems from an inherent failure of the model structure
to represent the actual physical problem. The latter is difficult to avoid
because one cannot ignore limitations resulting from fundamental ignorance.
In principle, therefore, nuclear data practitioners who utilize nuclear
models to interpolate (or even extrapolate) far into regions untested
by observation (i.e., experimental results) should anticipate large uncer-
tainties for their results. Furthermore, the uncertainties are hard to
estimate under these conditions. On the other hand, if a parameterized
model which has been adjusted to agree with experimental observations is
used for predictions in circumstances not deviating excessively from the
experimentally-tested domain, then the uncertainties in these predictions
can be estimated with greater reliability. The situation is analogous to
simple curve-fitting (e.g., Refs. 16 and 17), where intrinsic defects in the
functional form of the fitted curve are compensated by parameter adjustment
to match experimental reality.

Methods for fitting parameterized formulas to experimental data are dis-
cussed extensively in Refs. 16 and 17. In principle, there should be no dif-
ficulty in applying these methods to the more complex (but conceptually sim
ilar) problem of fitting experimental nuclear data with a parameterized nuclear
model. For example, the OM code ABAREX by Moldauer (Ref. 18) permits the simul-
taneous fitting of a spherical OM to neutron total and differential scatter-
ing (elastic and/or inelastic) cross section data over a wide energy range.

In practice it is rarely possible to do this rigorously. First, proper least-—
Squares fitting analyses requires that complete covariance information be a-
vailable for the input data. One seldom has this information available. Next,
a rather general least-squares algorithm must be used in the fitting process.
Few, if any, contemporary nuclear model codes utilize minimization algorithms
designed to treat the covariances properly. Much simpler weighting techniques
are normally used and correlation effects are usually ignored. Most nuclear
model codes are very complex and it is impractical for all but a few who are
familiar with them to modify their existing fitting algorithms. Finally,
there is the matter of computational expense. Existing codes have been de-
signed to run as quickly as possible, but even so it can become quite expen-
sive to fit large bodies of data-especially with coupled-channel codes. Con-
slderation of covariance information would be likely to limit further the
contemporary use of these codes. In view of these very real pragmatic consid-
erations, it becomes necessary to seek alternative (and perhaps not quite so



rigorous) schemes for fitting models and estimating uncertainties, deferring
sophisticated analytical approaches until the advent of substantial progress
in computer software and hardware,

Most nuclear model codes are intended to fit data for a particular
nucleus, or perhaps for a multi-isotope element if one assumes an average mass
A and neutron number N as an approximation. The goal for most nuclear model-
ing efforts in the applied nuclear data field is to develop regional para-
meterizations which can be used for interpolation or extrapolation to un-
measured quantities. Nuclear models involve manipulation of only a few
parameters (e.g., six or fewer parameters are adjusted in most OM analyses),
For the OM, it has been observed that nucleon interactions for wider ranges of
nuclei can be rather well described if the parameters are assumed to be
dependent on mass number A, on the neutron excess factor (N - Z), and on
energy, e.g., refer to Hodgson (Ref. 19), Rapaport (Ref. 20) and Smith et al.
(Refs. 21 and 22). In the absence of a fundamental understanding, simple
empirical formulas are inferred from the variation in the parameters, as
suggested by comparison of calculated and experimental results,

In the present work, we investigate the possibility of estimating uncer-
tainties in regional-nuclear-model predictions based upon the actual scatter
of local fitted-parameter sets relative to the regionally~predicted parameter
values. It is assumed that each local parameter set serves to represent the
whole body of experimental data used in the fitting process which generated
that local parameter set. No a priori assumptions are made regarding specific
uncertainties and correlations for these local parameters. In fact, the
probable uncertainties and correlations (variances and covariances) are
deduced a posteriori from consideration of the above-mentioned scatter of
local parameters relative to regional predictions, It is assumed that the
scatter of the local parameters relative to the corresponding regional
parameters reflects all uncertainties of the procedure, including errors in
the data, non-optimal local parameterization, nuclear model shortcomings,
and inadequacies of the assumed model-parameter variations across the
region. This line of reasoning ultimately leads to the estimation of a
relative covariance matrix for the regional parameters, In turn, ome can
derive uncertainty estimates for cross sections, (calculated using these
regional-model parameters) with the aid of standard error propagation
techniques. While this approach seems quite plausible, the assumptions upon
which it {s based are numerous and not easily justified.

Pearlstein (Ref. 7) has also suggested a method for estimating uncer-
tainties in fitted parameterizations. In his method, a nonlinear expression
for x2 (which is to be minimized) is first linearized., Needed partial
derivatives are derived using the model code, by means of the finite differ-
ence method. Then, in a separate (less complicated) code, the approximate
xz formula is used in the minimization process. This method still requires
detailed covariance information for the fitted values. The need for altering
the fitting algorithum of the complex model code is, however, cleverly
avoided by this approach., Mass and energy-dependence can be included in
this approach by expanding the number of parameters considered.

The essential difference between the method to be described in this
paper and that of Pearlstein is that the present method is capable of
estimating the uncertainties of a parameterization after its derivation



be accessible,

The basic ideas of the present method are developed in Section II, and
formulas required for analysis are derived there as well. An example is
treated in detail in Section III. It considers the regional parameterization
developed for the range Z = 39 to 51 by Smith et al. (Ref. 21). Section Iv
summarizes the results of the Present investigation. Throughout this
report, the reader should remember that the terms “error" and "uncertainty”
are used interchangably, and are to be interpreted as having the same
meaning.



I1I. METHODOLOGY

The development of a reliable regional-model parameterization should be
based on extensive experimental data for specific nuclei and/or elements
representative of the region. In fact, this is a fundamental requisite of
curve-fitting exercises, e.g., refer to Refs. 16 and 17. Therefore, we assume
that experimental data are available for several nuclei or elements in the
region of interest. Furthermore, we assume that these specific experimental
data sets represent a relatively unbiased sampling in the region. That is to
8ay, the nuclei considered should span the mass—-region fairly uniformly.

For this discussion we need not be specific about the nature of the model.
However, it ghould be uniquely defined by a parameter set, designated here
by a vector p,

Assume that the model has m parameters (P1» P2seessPp) Which are adjusted
to fit data. We use the index i for this reference. Let n designate the
number of distinct available experimental data sets, as discussed in the
Preceding paragraph. We use the index k for this reference. Furthermore,
the data in these sets should be suitable for fixing the parameters of the
model in question. For example, the parameters of a spherical OM can be
fixed rather well for a nucleus by simultaneously fitting neutron total
cross section data and differential elastic scattering data. We assume that
each of the n local data sets has been fitted independently with the nuclear
model code, such that each resultant parameter set is explicitly intended to
provide a reasonable description of the corresponding local (elemental)
data. As Fig. 1 indicates, this process reduces a collective body of n
distinct experimental data sets to n local parameter vectors ﬁk.

In order to identify a nucleus (or element) k in the region of interest,
we define a coordinate vector &, which represents a collection of regional
variables. We use the word "variable" rather than "parameter” to avoid con-
fusion with the parameters which specifically serve in the model calculation.
We can now consider the form of the region parameterization, which we take to
be a collection of m functions PRi- Let pcix be the value of ppj at &, i.e.

Peik = PRri(3k). (1)

Thus, Pcik 1is the calculated regional equivalent of the local parameter
value pjx. When a local parameter pjk is compared with a regionally

derived parameter Pcik, this must always be done at the coordinates of the
kth nucleus, &k. In the specific example treated in Section III, we

employ as regional variables the quantities A and (N-Z). Of course the
motivation for establishing a regional parameterization in the first place
is to be able to interpolate or extrapolate to nuclei not represented in the
original sample.



The forms of the functions pgpy are probably empirical. An explicit function
pri 1s generated by fitting the local values pj, with an assumed functional
shape (e.g., a polynomial)., The nature of the regional parameterization
developed this way is influenced not only by these functional forms, but
also by the weighting scheme used in fitting them. We generally have no a
priori knowledge of the uncertainties for the various Pike If, however,

all the pji are derived in a uniform manner from data sets of equivalent
scope and accuracy, then we should expect that the relative uncertainties in
the various corresponding local parameters are comparable. Therefore we
assume that the uncertainty Ap;k can be expressed in the form

8pjx = Bipik. (2)

Bi is an unknown constant which applies to pi regardless of the particular

k. This assumption of constant fractional uncertainty for corresponding local
parameters allows us to fit the regional model formulas to the local parameter
sets without having to have an explicit knowledge of the Bi. Another possible
fitting method would be to weight each corresponding pyy equally., This

method is difficult to defend because it tends to welght the larger values
more heavily, There is no reason to expect that the precision to which any
Pik 1s known improves when that parameter value increases in magnitude,

Thus, we chose to accept the assumption of constant fractional uncertainty for
corresponding pjp values in the present development,

In order to estimate errors in cross sections calculated using a nuclear
model, it is necessary to have knowledge of the model-parameter covariance matrix
Vp or, equivalently, the relative covariance matrix Mp since (pipj Mpij)
equals V ij for all 1 and j from 1 to m. If we were to proceed under the
assumption that a fixed set of regional parameters would serve our purpose,
then V, could be derived from a straightforward statistical analysis
of the collection of local parameter sets represented by the pjp (i = I,

m; k = 1, n). Unfortunately, constant regional parameters do not fit most
data adequately. Thus we choose to represent our regional parameterization
by m functions pgpy which are fitted to the local parameter values pjy

and thereby reproduce observed variations across the region. Therefore, we
gccept as fact that most realistic collections of local parameter vectors
Pk exhibit regional variations. In order to be able to do a statistical
analysis on the Pik (i fixed) we must renormalize the uncertainties Apyk

to assure that they in fact are comparable. We do this by introducing the
set of fractional-deviation quantities

P - P
- _1ik ik .
Fe =5 =L mk=1, ). (3)
cik

The Fik are measures of the scatter of the Pik about their regional equi-
valents, independent of their magnitudes. The samplings of the fractional
deviations are really not likely to be explicitly unbiased; however, if the
available fitted data sets are reasonably evenly distributed across the region
of interest then the samplings can be treated as unbiased for all practical
Purposes,



Associated with these Fijx factors is a covariance matrix Vrp. So long
as the various regional-parameter functions Pri fit their corresponding local
parameter sets well, then Vp can be considered as a good approximation to
Mp across the region, thus justifying our interest in the Fik. The_reader is
referred to the Appendix where we examine the relationship between Vy and
Mp in detail for a simple case in order to demonstrate these ideas.

- As discussed in Ref. 23, estimates of the elements VFij for the matrix
VF can be derived from the formula

n n n
1 1 . .
x = - = . i =1, m). (4)
vFij n k£1 Fik Fyx n? ¢ kfl TR k:l Fik ) (4,3 )

Eq. (4) will tend to converge as n increases. For the present consideration,
n 2 10 is probably a reasonable sampling.

An interesting test of the goodness of fit of the regional-model formulas
to the local-model parameter sets involves the terms in Eq. (4). 1In other
notation (consistent with the Appendix) the elements of the matrix Vr,
namely VFij’ can be expressed as

VFij x <Fy Fj) - <Fj> <Fj> (1, 3 =1, m), (5)

where <...> designates averaging as shown explicitly in Eq. (4). The magni-
tude of the ratio of absolute values,

Rpij = |<F1 Fj>| / |<Fi> <Fj>| (i, =1, m), (6)

should be examined. Large values of RFiﬂ indicate no serious bias toward
either positive or negative values for the Fi{k, and thus a good fit. We
have obtained Vp for the region of interest and can now use it to derive
the covariance matrix V for_any p calculated using the regional
formulas. Vp 18 relateg to Vg by the expression

Vpij = PiPj Mpij X p1Pj Vp1y (1, § = 1, m). (7)

It follows that the correlation matrix Ep 1s approximated by the
corresponding matrix Cp according to the expression

Cpij = Cpij = Vp13/(Vpys VE3/2 (4, 3 =1, m). (8)

The rules for uncertainty propagation have been discussed extensively
in the literature (e.g., Refs. 16 and 17). Let & represent a set of
cross sections oy (£ = 1,q) which are calculated using the regional parame-
terization. For the P appropriate to the nucleus in question we have



og = 0g(B) (=1, q . (9)

The covariance matrix Vo for 3 is calculated using the formula
Voig = (§j ° ﬁp)t ° Ep ®(Sy @ Ep) (3,2 = 1,9). (10)

Here "®" indicates matrix multipiication, and "t" indicates matrix transposition.
Ep is calculated using Eq. (6), Ep 1s calculated using the formula

Ept = (Vp11)1/2 & py (vpy1)1/2 (1 = 1,m), (11)

and a typical sensitivity matrix §£ is given by the diagonal expression

(302/391) 0
(QOz/apz)
[ ]
Sy = . ° (12)
®
0 (302/3pm)

et
—

(&=1,q)

The partial derivatives indicated in Eq. (12) can be estimated readily using
the finite difference method, with each Pi varied in turn while the other
components of P are fixed. Thus,

(30,/3py) =~ [og(py + Ap1) = og(py — Apy)]/2apg
(2=1,q; 1= 1,m).

The analysis indicated by Eq. (13) is performed using the nuclear model
code. Selection of appropriate Ap; is guided by examination of the convergence
of the finite difference expressions for various choices of the Apy .

Uncertainty information for the 0y derived using the regional model is
contained in the matrix Vg The specific errors Egg are obtained from the
formula

Egg = (Vge)1/2 (2 =1,q). (14)

The uncertainty correlation between o4 and oy 1s given by

1/2
Coje = Yo/ (Vgij Vorg) / (1s)
(i,2 =1,q)

This error Propagation process 1s indicated schematically in Fig. 1.
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In this formalism the various samplings of parameter space, which
are placed on equivalent footing by considering the Fy) rather than the
Piks, are assumed independent. This, of course, does not exclude the
possibility of correlations between the one or more parameters. For example,
in analyses with the spherical OM one should expect to observe the well-known
correlation between V and r, (often referred to as the Vrv2 effect,
as in Ref. 7).

One obvious feature of the present approach is that a rather extensive
experimental data base is needed. The number n of samplings should be large
enough so that Eq. (4) yields a reasonable estimation of the elements of
the parameter relative covariance matrix. There are extensive data available
for certain types of cross sections, e.g., the neutron total cross section
and elastic scattering cross section. For other data types the situation is
less favorable. Another problem which can limit the applicability of the
method is that it is not always possible to find sufficient data of comparable
quality to provide adequate coverage of a region of interest. Such situations
do not satisfy the present requirement that each experimental sampling be
more or less equivalent, and they would require alteration of the formalism.

A priori specification of uncertainties for various components of such data
bases would be needed,

Unlike an arbitrary curve fitting procedure, the fitting of a model is
inherently more stable due to the fundamental constraints stemming from the
model's theoretical foundations. The utility of a good nuclear model lies
in its power to predict a wide spectrum of physical quantities which may or
may not have been included in the data base employed in its parameterization.
Two rather distinctive aspects of the accuracy of predictions by a fitted
model are of concern. These involve statistical features of the fitting
process and the quality of the theoretical concepts of the model. These
ideas can be illustrated by considering an optical-statistical model para-
meterization based on neutron elastic scattering data (dgg1/df) only. If
we were then to calculate the elastic scattering from a nucleus not included
in the original sampling, the reliability of this prediction would be
dominated by statistical considerations, as discussed in this paper. If we
now attempt to predict a neutron total cross section (or), the outcome
would be strongly influenced by the fidelity of the model above and beyond
the statistical considerations. Clearly our present method cannot account
for this type of uncertainty. It happens that the example we have presented
does not strain the predictive capabilities of the model considered. Had we
demanded instead that the model fit total cross section data, and then asked
for elastic scattering distributions, the results would have been far less
reliable. Clearly the present approach must be applied thoughtfully,
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III. AN EXAMPLE

Smith et al. (Refs. 24-34) recently completed an extensive program of
measuring total and scattering cross sections for elements in the range Z =
39 to 51. These results, supplemented by total cross section data from
Poenitz and Whalen (Ref. 35), were used to develop a series of energy-
dependent spherical OM parameterizations, one for each of the eleven elements
Y, Zr, Nb, Mo, Rh, Pd, Ag, Cd, In, Sn and Sb. These parameter sets were
derived using the OM program ABAREX (Ref. 18) which simultaneously fitted
total and scattering data (mostly elastic), element by element. Subsequently,
Smith et al. (Ref. 21, hereafter referred to as "Smith et al.”) examined the
systematic behavior of these elemental (local) parameter sets and developed
a regional parameterization for the range Z = 39 to 51, inclusive of mass-,
isotopic—-and shell-dependent effects. Since this comprehensive body of results
was derived without consideration of uncertainties, it offers a good oppor-
tunity to apply the present ideas to a typical situation as we envision it.
The principal requirements for the present method appear to be satisfied. The
sampling is of adequate size (eleven elements) and it spans the Z = 39 to 51
region rather uniformly. The available data cover the energy range from a few
hundred keV to ~ 4 MeV in detail. Finally, all the measurements were performed
in the same laboratory with more-or-less uniform precision.

Although the interested reader is referred to the papers of Smith et al.
for details, we briefly summarize the salient features of their model fitting.
Their OM potential employed the Woods-Saxon form for the real potential with
a linearly energy-dependent depth, the derivative form for the imaginary
potential with energy-independent depth, and distinct geometric parameters
(i.e., r and a) for the real and imaginary potentials. The spin orbit
potential was of the Thomas form with fixed depth and geometric parameters
identical to those for the real potential. In comparing the potentials of
various elements, they took the real and imaginary volume integrals per
nucleon, (J/A)y and (J/A), respectively, to be more meaningful measures
of the OM strengths than the depths V and W (e.g., Refs. 20 and 21). For
this purpose they used the approximations given in Ref. 7, which are accurate
to better than one percent in the present context (Ref. 22).

Smith et al. utilized code ABAREX for the elemental model fitting.
The code searches the parameter space (V, r,, ay, W, ry, ay), weighting
the scattering data by a factor of 10 more than the total cross section
data. The results of this analysis are reproduced in Table 1. They were
used to derive (J/A)y and (J/A)y values. This collection of local
Parameters served as the basis in developing a regional parameterization.
The empirical formulas for all regional parameters, with the exception of W,
were agsumed to exhibit a simple linear dependence on the regional variables
A or (N-Z)/A. The geometric parameters ry, ay, ry, a, were linear
in A, while V displayed the well-known isovector component which is linear
in (N-Z)/A. The elemental values were least-squares fitted with unifornm
weighting using these linear forms. The regional parameterization indicated
in Table 2+A resulted. The regional empirical formula for W was taken as
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the superposition of a linear isovector term (like that for V) and a

cosine term whose argument depended linearly on A. As discussed in detail
by Smith et al., the latter term is a convenient computational device for
representing the observed shell closure dependence of W, but it has no
apparent physical justification. In deriving the numerical values for the
regional parameterization of W, Smith et al. proceeded in two steps using
graphical methods. First they observed that (J/A),, displayed nodes around
the shell closures N=50 and Z2=50. Assuming the shell effect to be negligible
at these points, they obtained the isoscalar and isovector components. Next
they established the period of the cosine term by noting that the average

A for the N=50 nuclei is 89.6, while that for the Z=50 nuclei is 118.8,
implying a period of 29.2. The magnitude was then adjusted to a value

that appeared to represent the elemental (J/A)y well to within the un-
certainty of the entire procedure. Their judgment is also reflected in
round-off accuracy of two digits to be found in Table 2.A. This parameteri-
zation will be referred to as Set A.

Our derivation of the regional parameterization differs from that of
Smith et al. in two fundamental respects. First, we elected to deal with V
and W rather than (J/A)V and (J/A),, because V and W are two potential
parameters explicitly adjusted by ABAREX and therefore they stand on equal
footing with the geometric parameters (labeled r and a). As it was emphasized
in Section II, the uniform treatment of all parameters is essential to the
validity of the present method. Secondly, all empirical regional formulas
were least~squares fitted to the local parameters assuming uniform fractional
uncertainties as discussed in Section II. As the point of departure for our
analysis we accepted both the local parameters and the regional empirical
formulations of Smith et al. We investigated the effect of using V and W
rather than (J/A), and (J/A)w (as well as least-squares fitting the
formula for W) by doing the fits with unit weights, as Smith et al. had
done. We label these results Set B and show them in Table 2.B.

We then fitted the elemental parameter sets assuming that each
corresponding value has the same fractional uncertainty, consistent with the
tenets set forth in Section II. The regional model formulas appearing in
Table 2.C, and designated as Set C, were thus obtained.

Our major emphasis in the present investigation is on analysis involving
the Set C regional parameterization. Utilizing the Set C_formulas and the
elemental parameters from Table 1, we derived the matrix Vg according
to Eq. (4). The result appears in Table 3. The estimated uncertainties
(standard deviations) in the regional parameters given by the Set C
formulation are also given. Furthermore, it is seen that there are several
strong correlations (or anticorrelations for a negative sign). The most
prominent involve the pairs of parameters (Vo, ry)* and (W, ay). These
are well-known correlation effects for the OM (e.g., Refs. 7 and 21).

iﬁere we designate the energy-independent component of the real potential as Vo-



13

In the case of (V,, ry), it has been observed that the quantity

Vofi behaves roughly as an invariant in OM studies. This is con-

sistent with the 88% anticorrelation derived 1in the present analysis. The
quality of the fit of the regional-model Set C to the elemental parameters
can be measured by examining the Rpiy, as defined in Eq. (8). These
values appear in Table 3 also, and tAey indicate that Set C forms a
reasonable set of fitted curves.

As a first step 1s assessing the results of our analysis, we compared
the total cross sections calculated using the local parameters given in
Table 1 with the experimental data base of Smith et al., (Refs. 24-34),

Table 4 shows the observed systematic differences over coarse energy
intervals. While agreement isg generally to within 2-4%, which 1s on the
order of the experimental errors, there are some noticeable differences. We
suspect that these originate because the total cross section was not given
primary emphasis in the fitting process.

Next, we examine how the various corresponding parameters, computed
from the Set A, Set B and Set C formulations, compare with each other and
with the local parameters. Scale indicators for this intercomparison are the
parameter standard deviations from Table 3. The results appear in Table 5.

values appears consistent with the derived standard deviations. Several of
these differences exceed the corresponding standard deviations for these
parameters, as might be statistically expected. The differences between the
values for Set A, Set B and Set C are all smaller than the corresponding
standard deviations, usually substantially smaller. The difference between
the parameters from Set A and Set B are quite small, except for ay and W
where the differences are noticeable but not unreasonable. The origin

not clear. The same method of derivation was used in each instance.
However, distinct methods were used in treating W so differences in these
results were anticipated.

We also examined neutron total cross sections over the 1-4 MeV range
for the eleven elements, using the local as well as all regional parameter
sets. The results are presented in Table 6, Generally, the regional
parameterizations produce lower total cross sections than the local ones.
Mutual differences are usually < 4%,

Finally, we sought to determine which parameterization best represents
experimental values. The answer is given in Table 7. While no one parameter
set clearly fits the experimental data best, Set C evidently does worst.

Error prediction is the primary objective of thig paper, so we pursued
this task in the framework of the present example using the Set C parameterization
throughout. First we tested self consistency by comparing our predicted
uncertainties with the deviations of model predictions from experimental
data for a member of the original eleven-element data base, namely Rhodium.
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A search in CINDA (Ref. 36) revealed that the only other total cross section
data available at these energies were from Poenitz and Whalen (Ref. 35) and
Foster and Glasgow (Ref. 37). These experimental data are plotted in Fig.

2. Also shown are curves calculated using parameter Sets A, B, and C. The
uncertainties predicted by our method are designated by heavy error bars
centered about the Set C curve at the whole-MeV energies. These uncertainties
are somewhat larger than 2%. An inspection of this figure indicates that

the deviations of calculated values from the experimental ones are consistent
with this uncertainty,

Next we tested the predictive capabilities of our method by considering
two elements in the present mass range, but not included in the sample:
Technitium and Ruthenium. According to CINDA (Ref. 36) the only available
experimental data relevant to the present example are the total cross section
values of Foster and Glosgow (Ref. 37). These data are plotted in Figs. 3
and 4, for Technitium and Ruthenium respectively, along with curves calculated
using parameter Sets A, B and C. The predicted uncertainties are computed
and shown here in the same manner as for Rhodium. The errors are generally
~ 2-3%, and again they are consistent with the deviations observed between
calculation and experiment,

These observations are quantitatively stated in Table 8 together with
the correlation matrix elements. The correlations vary from element to
element, and this is caused by local variations in the computed sensitivity
coefficients, However, in each instance the effect of the OM-parameter
uncertainty correlations is to reduce the calculated error by approximately
50%. 1In the specific case of Rhodium, neglect of all OM-parameter uncertainty
correlations leads to predicted errors in the range 4.5 - 7% compared to the
2.1 - 2.3% values from Table 8.
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IV. SUMMARY

In principle, nuclear models could be fitted by rigorous least-
squares methods to experimental data, thereby ylelding unbiased best-
estimate parameter sets along with the covariance information needed for
subsequent determination of errors in other calculated cross sections. In
practice, the absence of covariance information for the fitted data and
inherent limitations of the fitting algorithms in most contemporary model
codes imposes a need to resort to less rigorous schemes in order to estimate
errors for calculated quantities. This report describes one such method.

Given a specific mass region, our method involves consideration of
parameters derived from conventional analysis of experimental data, applied
to several elements which collectively represent the region they span.
Since model parameters are prone to vary in magnitude across a mass
region, it becomes necessary to perform a transformation from the
parameter space to another space which allows the use of simple
statistical methods. The transformation is accomplished by selecting
specific functions which represent the main features of the parameters
across the region. Statigtical analysis of the transformed quantities
leads to an estimate of the model parameter covariance matrix which must be
known in order to derive the errors in quantities calculated using the
nuclear model,

The method provides the most reliable error estimates when one deals
with those quantities akin to the experimental data base upon which the
model parameterization is founded. Of course it will also provide
estimates of errors for other cross sections calculable by the model,
but the reliability of these estimates will be difficult to ascertain.

In other words, the errors calculated here include only statistically based
components of parametric origin. The utility of the specific model (as
manifested by its parameterization) in any untested situation cannot

be assessed quantitatively. Therefore, discretion must be employed in
performing such analyses.

Our procedure has been demonstrated numerically in a realistic
problem. This exercise clearly exhibits the importance of parameter
uncertainty correlations. In our example, it is found that neglect of
these correlations leads to overestimation of total cross section errors
by about a factor of two, whereas inclusion of these correlations
results in errors consistent with observed differences between experi-
mental and calculated values.
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APPENDIX

The idea that an a posteriori examination of the scatter of sampled
values about the assumed best representation of the ensemble will lead to an
estimate of the variance of the quantity can be better understood from a
consideration of the following simple example.

Let {py} be a set of n quantities obtained as a result of sampling
the universe of all possible values for p; for simplicity assume them to
all be comparable and assign equal weight to all the samples. Adopting
the notation that a bar over a quantity denotes the true universal average
of that quantity, we define the approximation

=2

n
Px<p>:= L Pk (A.1)
k=

1

According to Ref. 23, the variance Vp of p is given by

;_2— - .p‘2 (A.2)
~ <p2> - <p>2,

Vp

where the <**+> are to be interpreted as defined in Eq. (A.1). Following
Ref. 16, we note the definition of the relative variance Mp, namely,

= p2
Vp P* Mp. (A.3)

Note that only one quantity is considered so the variance and relative
variance are two scalar quantities rather then matrices.

Suppose that for some reason we had not bothered to try and seek the
best value for p, namely P or its approximation <p>, by rigorous means.
Instead, assume that we obtained a value p, which in fact turns out to
differ only a little from either P or <p>. For example, perhaps we
might have drawn a straight horizontal eyeguide line through a convenient
graphical representation of the set {px}. This 1s an artificial situation
since <p> is so easy to derive in this simple example that we would not be
likely to settle for a less rigorous approximate value. However, in more
complicated situations such as those discussed in the main text we may be
forced by practical considerations to settle for another estimated "best
value”, like p,.

Now, define the set {Fy} by the equation
Fr = (px =~ po)/Po (k = 1,n). (A.4)

Given py, this unambiguously defines a transformation from the {pyl}
to the {Fp}. The variance of F is estimated from the sampling {Fk}

by
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Ve = FZ - F2
(A.5)
= <F2> - <FX2,

analogous to Eq. (A.2). Combining Eqs. (A.2), (A.4) and (A.5) leads to

Vp = F2 - F2
=_l_ (pZ - 2p Po t poz) - _1_ (p - po)2
Po> Po? (A.6)
=1 (p? - p?2)
Po’
= vp/poz .
Comparing Eqs. (A.3) and (A.6) gives us the expression

2
Po VF - ;2Mp: (A'7)

which implies the important conclusion that

Q

Vg if p, = P. (A.8)

Mp

In this simple example, Vp can be estimated directly from the
formula

Vo m poo (KFZ> - <rd?) (4.9)

Q

P

which follows from Eqs. (A.5) and (A.6). Eq. (A.9) applies regardless of
whether or not Po 1s a good approximation to P. This is always the case

if p can be thought of as essentially a coastant quantity. However, in the
treatment presented in Section II of the text, we do not deal with such
constant quantities, Instead, quantities like P are likely to vary consider-
ably across the region. Then we must replace p, by an assumed function PR
and Eq. (A.4) assumes the form
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F = [pk - PR(;k)]/PR(Ek), (A.10)

with Ek identifying the regional location of sample k. Under these condi-
tions, the transformation from {py} to {Fy} by means of the function pg

is necessary in order to be able to perform the statistical analysis needed to
estimate the covariance Vp. A statistical analysis of F yields Vp which
approximates Mp. Then Vp 1s obtained according to

V, = p? My, (A.11)
P
p? Vp

Q

The quality of this estimate of Vp depends on the degree to which the
function pg represents the py values well,
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TABLE 1. Elemental Optical-Model Parametersd
N-Z
Element Z A x Vo ry ay W ry ay
Y 39 89 0.124  49.19  1.230  0.738  8.143  1.471  0.303
— b
Zr 40 916 0.127  49.41 1.221  0.748  7.680  1.416  0.398
Nb 41 93 0.118  49.71 1.230  0.702  6.505  1.349  0.477
Mo 42 96.03° 0.125 49.86 1.207  0.767  8.093  1.399  0.438
Rh 45 103 0.126  46.90 1.266  0.686 10.990  1.319  0.431
—Y
Pd 46 106.5 0.136 47.35 1.260  0.637 10.160  1.230  0.527
—b
Ag 47 108 0.130  48.25 1.249  0.603  8.501  1.270  0.575
Y
cd 48 112.5° 0.147  48.82 1.247  0.600  7.373  1.193  0.595
In 49 115 0.148  47.29  1.267  0.644  8.496  1.317  0.406
—
Sn S0 118.8 0.158  48.53  1.251  0.596  7.040  1.244  0.471
Sb 51 121.88 0.163 48.36  1.245  0.620  5.600  1.210  0.627

8From the work of Smith et al. (Refs. 24-34),

bAverage masses used when more than
to OM analysis (Refs. 24-34),

one isotope contributed significantly
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TABLE 2. Regional Optical-Model Parameter Formulas

Smith et al.2a

Vo = 52.58 - 30.0 (N-Z)/A
ry = 1.131 + 0.00107A

ay = 1.203 - 0.00511A

W = 11.70 - 25,0 (N-Z)/A - 1.8 cos [2n(A-90)/29]
ry = 2.028 - 0.00683A

ay = -0.1061 + 0.005551A

Present work, equal weighting

Vo = 51.505 - 21.892 (N-z)/A

ry = 1.1311 + 0.0010658A

ay = 1.1750 - 0.00483354 _

W = 11.369 - 21.408 (N-Z)/A - 1.4464 cos [2n(a-89.6)/29.2]
ry = 2.0280 - 0.0068291A

ay = -0.10774 + 0.00556824A

Present work, equal fractional uncertainty

Vo = 51.310 - 20.722 (N-Z)/A
ry = 1.1296 + 0.00107674A
ay = 1.1585 - 0.0047023A

W= 11,605 - 24,709 (N~Z)/A - 1.3921 cos [2n(A - 89.6)/29.2]
ry = 2.0093 - 0.0066807A
ay = -0.12986 + 0.0055749A
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TABLE 3. Optical-Model Relative Covariance Matrix Results.

Correlation MatrixP

Parameter Error2 P Py Py P, Ps Pg
Py =V, 1.9% 1
(symmetric)
Py =1y 1.1% -0.88 1
P3 = ay 4.5% 0.17  =0.41 1
Py =W 11.5% -0.47 0.50 0.20 1
ps = rw 304% 0008 -Oo 14 0064 0.53 l
Pg = a, 15.0% 0.23 ~-0.27 -0.39 -0.89 -0.81 1

Quality of Fit ParametersC

i h] Rrij i h) Reij

1 1 687.4 3 3 125.9
1 2 1002 3 4 10.55
1 3 51.59 3 5 105.8
1 4 52.57 3 6 12.85
1 5 30.21 4 4 19.97
1 6 20.41 4 5 34.42
2 2 1888 4 6 11.24
2 3 198.2 5 5 213.5
2 4 95.20 5 6 36.30
2 5 90.07 6 6 11.03
2 6 36. 34

8Error in Py 1s derived from (VFii)l/z, expressed in percent, using Eq. (4).
bThe correlation matrix elements are calculated using Eq. (8).

“Derived using Eq. (6). Rpij = Rpyy for all i, j = 1,6.
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TABLE 4. Comparison of Total Cross Section Experimental Data and the
Predictions of the Fitted Elemental Model Formulations.

Trend of Experimental

Data Relative to OM Regultsad

Maximum
Element 1 - 2 Mev 2 - 3 Mev 3 - 4 Mev Differenceb
Yttrium + 0(+) + + 6%
Zirconium 0(+) 0(-~) - - 4%
Niobium 0(+) 0 0 + 1.5%
Molybdenum o(+) - - - 4,5%
Rhodium o(+) + + + 2%
Palladium + + + + 3%
Silver + + + + 4%
Cadmium + +(0) +(0) + 4%
Indium 0(+) +(0) + + 2%
Tin +(0) + + + 4%
Antimony 0(-) 0(-) 0(+,-) - 1.5%
8 4+ : Data mostly above model curve.

= ¢ Data mostly below model curve,

+,— ¢ Data scattered noticeably relative to model curve
0 : Data agree well with model curve.

(«ee): Alternative possibility when trend is ambiguous.

bIndicat:e approximate maximum discrepancy observed be
curve over 1-4 MeV range. Fluctuations may affect ¢
and model results for the lighter elements.

nearest 0.5%. Positive sign implies data abo

with no dominant trend.

tween data and model
omparisons of data

Percent values estimated to
ve model result.
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TABLE 5. Percent Differences Between Optical-Model Parametersga

Py =V, (1.97)® Py = ry (1.1X)P
Element Elementalc Set A Set B ElementalC Set A Set B
Yttrium +0,9 +0.3 +0.1 +0.4 +0.1 ~0
Zirconiup +1.5 +0.2 +0.1 -0.6 +0.1 ~0
Niobium +1.7 +0.4 +0.1 ~0 +0.1 ~0
MOlybdenum +2.3% +0.2 +0.1 ~2,1% +0.1 ~0
Rhodium -3.7% +0,2 +0.1 +2,1% +0.1 ~0
Palladium =2.4% ~ +0.1 +1,3% +0.1 ~0
Silver -0.8 +0.1 +0.1 +0.2 +0.1 ~0
Cadmiunp +1.2 -0.2 ~0 -0.3 +0.1 ~0
Indium -2.0% -0.2 ~0 +1.1 +0.1 ~0
Tin +1.0 -0.4 ~0 -0.5 ~0 ~ 0
Antimony +0.9 -0.5 ~0 ~-1.3% ~0 ~0
Py = a, (4.52)b P, =W (11.5%)b
Element ElementalC Set A Set B ElementalC Set A Set B
Yttrium ~0.3 +1.1 +0.7 +13,6% ~4.4 +1.6
Zirconiung +2.8 +1.0 +0.6 +6.6 -5.1 +1.9
Niobium -2.7 +0.9 +0.6 ~14,9% -4,4 +1.5
Molybdenunm +8. 5% +0.8 +0.6 -2.0 ~1.8 +2.0
Rhod1ium +1.8 +0.4 +H.4 +11,8% +4.3 +2.4
Palladfupg -3.1 +0.2 +0.4 +7.3 +4.9 +2.8
Silver =7.3% +0.1 +0.4 -9,0 +4.4 +2.5
Cadmiun -4,6% -0.2 +0.3 -3.9 +.8 +3.1
Indium +4,3 ~0.4 +0.2 +21,4% -2.3 +3.1
Tin -0.6 -0.7 +0.2 +11,6% -5.7 +3.7
Antimony +5.9% -0.9 +0.1 +13,5% -4,9 +4.0

———
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TABLE 5. Percent Differences Between Optical-Model Parameters? (Contd.)

Ps = Iy (3.42)° Pg = 3 (15.0%)°
Element Elemental® Set A Set B Elemental® Set A Set B
Yyterium +3.9% +0.4 +0.4 -17.3% +5.9 +5.9
zZirconium +1.3 +0.4 +0.4 +4.5 +5.7 +5.6
Niobium -2.8 +0.3 +0.4 +22.7% +5.5 +5.5
Molybdenum +2.3 +0.3 +0.3 +8.0 +5.3 +5.3
Rhodium -0.2 +0.2 +0.3 -3.0 +4.8 +4,8
Palladium ~5.2% +0.2 +0.2 +13.6 +4.5 +4.6
Silver -1l.4 +0.2 +0.2 +21.8% +4.6 +4.5
Cadmium -5.1% +0.2 +0.2 +19.6% +4.2 +4.3
Indium +6.1% +0.1 +0.1 -20.6% +4,1 +4.2
Tin +2.3 +0.1 +0.1 -11.5 +3.9 +4.0
Antimony +1.2 ~ 0 +0.1 +1l4.1 +3.8 +3.9

3Percent differences relative to Set C regional parameters.
bparameter standard deviations from Table 3.
CValues marked "*" exceed parameter standard deviatioms.
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TABLE 6. Comparison of Total Cross Sections Calculated Using Elemental and
Regional OM Parameters@.

Set A Set B Set C
Maximum % Maximum % Maximum 7%
Element Trendb Difference® Trendb Difference€ TrendP DifferenceC®
Yttrium +,- ] - -2.1 - -3.8
Zirconium - -1 - ~1.7 - -3.1
Niobium - -1.7 - -3.2 - -3.9
Molybdenum - -3.6 - -3.3 - =-5.1
Rhodium + +1.9 + +1.7 - -1.4
Palladium +,- -2.3 +,- ~-1.9 - -2.0
Silver - -0.5 - -0.6 - -3.4
Cadmium +,- +0.9 - -0.5 - ~1.8
Indium +,- +2.0 + +1.1 +,- +1.7
Tin + +3.6 + +3.9 + +2.7
Antimony - -3.2 - -2.8 - -2.9

8Percent values are differences in the regional model predictions relative to the
elemental model predictions.
+: Regional values mostly above elemental values.
=~: Regional values mostly below elemental values.
+,-: No clear trend. Regional values found more or less uniformly above and below
the elemental values.
CPositive difference implies regional value exceeds elemental value and conversely
for negative difference.
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TABLE 7. 1Identification of Best- and Worst~Fit Model Representations of
Experimental Total Cross Section Data.

Best Worst
Maximum 7% Maximum 7%

Element Modeld Differenceb Model?d Difference®
Yttrium (Set A) +6 Set C +8.5
Zirconium (Set A) -3 Set C +3
Niobium Elemental +1.5 Set C +5
Molybdenum (Set A) +3 Set C +4
Rhodium Set B +2 Set C +2.5
Palladium (Set A) +2.5 Set C +4.5
Silver Elemental +4 Set C +7.5
Cadmium Set B +3 Set C +5,.5
Indium Set B *] (Set C) +3

Tin (Set C) +2 (Set A) -1.5
Antimony Elemental +1 Set A +4

38(...): Choice somewhat ambiguous.

bIndicates approximate maximum discrepancy observed between data and model
curve over l1-4 MeV. Fluctuations may affect comparisons of data and model
results for the lighter elements. Percent values estimated to nearest 0.5%.
Positive sign implies data above model result.
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TABLE 8. Calculated Total Cross Sections and Uncertainties@
Rhodium [A = 103, (N-Z)/A = 0.12621]
Eq or Error Correlation Matrix
(MeV) (b) in op 1 2 3
1 6.39342 2.3% 1 (symmetric)
2 5.03306 2.1% 0.44 1
3 4,22298 2.2% 0.48 0.95 1
4 3.88226 2.2% 0.59 0.83 0.95
Technetium [A = 99, (N-Z)/A = 0.13131]
E, oT Error Correlation Matrix
(MeV) (b) in o7 1 2 3
1 6.42534 1.8% 1 (symmetric)
2 4.89190 2.1% 0.78 1
3 4,10271 2.1% 0.60 0.92 1

Ruthenium [A = 101.17, (N-Z)/A = 0.12977b]

Ep oT Error Correlation Matrix
(MeV)  (b) in op 1 2 3

1 6.40563 1.9% 1 (symmetric)

2 4.96532 2.1% 0.75 1

3 4.16370 2.2% 0.59 0.94 1

4 3.84247 2.2% 0.44 0.79 0.94

8Calculations em
Elemental value

ploy Set C regional model parameters.,
s derived as weighted average of isotopic values.
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Fig. 2.

En,MeV

Measured and calculated neutron total cross sections for 103Rh.
Curves A, B, and C are derived as discussed in Section III of

the text. Curves A and B differ only slightly. The experimental
data sets are: Ref. 25 (X), Ref. 35 (0), and Ref. 37 (+). The
solid vertical bars centered on curve C at E = 1, 2, 3, and

4 MeV designate errors calculated uging the gresent method.
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Fig. 3.

En,MeV

Measured and calculated neutron total cross sections for 39 Tc.
Curves A, B, and C are derived as discussed in Section III of

the text. Curves A and B differ only slightly. The experimental
data set is from Ref. 37 (+). The solid vertical bars centered

on Curve C at E =1, 2, 3 and 4 MeV designate errors cal-
culated using the present method.
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Fig. 4.

Eph,MeV

Measured and calculated neutron total cross sections for elemental
Ru. Curves A, B, and C are derived as discussed in Section III of
the text. Curves A and B differ only slightly. The experimental

data set is from Ref. 37 (+). The solid vertical bars centered on

Curve C at E = 1, 2, 3 and 4 MeV designate errors calculated
n
using the present method.
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